Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38610572

RESUMO

Accurately identifying adulterants in agriculture and food products is associated with preventing food safety and commercial fraud activities. However, a rapid, accurate, and robust prediction model for adulteration detection is hard to achieve in practice. Therefore, this study aimed to explore deep-learning algorithms as an approach to accurately identify the level of adulterated coconut milk using two types of NIR spectrophotometer, including benchtop FT-NIR and portable Micro-NIR. Coconut milk adulteration samples came from deliberate adulteration with corn flour and tapioca starch in the 1 to 50% range. A total of four types of deep-learning algorithm architecture that were self-modified to a one-dimensional framework were developed and tested to the NIR dataset, including simple CNN, S-AlexNET, ResNET, and GoogleNET. The results confirmed the feasibility of deep-learning algorithms for predicting the degree of coconut milk adulteration by corn flour and tapioca starch using NIR spectra with reliable performance (R2 of 0.886-0.999, RMSE of 0.370-6.108%, and Bias of -0.176-1.481). Furthermore, the ratio of percent deviation (RPD) of all algorithms with all types of NIR spectrophotometers indicates an excellent capability for quantitative predictions for any application (RPD > 8.1) except for case predicting tapioca starch, using FT-NIR by ResNET (RPD < 3.0). This study demonstrated the feasibility of using deep-learning algorithms and NIR spectral data as a rapid, accurate, robust, and non-destructive way to evaluate coconut milk adulterants. Last but not least, Micro-NIR is more promising than FT-NIR in predicting coconut milk adulteration from solid adulterants, and it is portable for in situ measurements in the future.


Assuntos
Cocos , Aprendizado Profundo , Animais , Leite , Espectroscopia de Luz Próxima ao Infravermelho , Amido
2.
Foods ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900472

RESUMO

The contamination of agricultural products, such as vegetables, by pesticide residues has received considerable attention worldwide. Pesticide residue on vegetables constitutes a potential risk to human health. In this study, we combined near infrared (NIR) spectroscopy with machine learning algorithms, including partial least-squares discrimination analysis (PLS-DA), support vector machine (SVM), artificial neural network (ANN), and principal component artificial neural network (PC-ANN), to identify pesticide residue (chlorpyrifos) on bok choi. The experimental set comprised 120 bok choi samples obtained from two small greenhouses that were cultivated separately. We performed pesticide and pesticide-free treatments with 60 samples in each group. The vegetables for pesticide treatment were fortified with 2 mL/L of chlorpyrifos 40% EC residue. We connected a commercial portable NIR spectrometer with a wavelength range of 908-1676 nm to a small single-board computer. We analyzed the pesticide residue on bok choi using UV spectrophotometry. The most accurate model correctly classified 100% of the samples used in the calibration set in terms of the content of chlorpyrifos residue on samples using SVM and PC-ANN with raw data spectra. Thus, we tested the model using an unknown dataset of 40 samples to verify the robustness of the model, which produced a satisfactory F1-score (100%). We concluded that the proposed portable NIR spectrometer coupled with machine learning approaches (PLS-DA, SVM, and PC-ANN) is appropriate for the detection of chlorpyrifos residue on bok choi.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...